
Focused and Deep Web Crawling-A Review
Saloni Shah, Siddhi Patel , Prof. Sindhu Nair

Dept of Computer Engineering, D.J.Sanghvi College of Engineering
Plot No.U-15, J.V.P.D. Scheme, Bhaktivedanta Swami Marg, Vile Parle (West),

Mumbai, Maharashtra 400056, India

Abstract— In the exponentially growing Internet, web search
engine companies needed to achieve scalability with large
amount of hardware and network resources. For that they
gave birth to a technique called focused web crawling to
discover topic related information that can be used in online
search. Focused crawlers dynamically browse the web by
selecting the most favorable links to get maximum number of
relevant pages with efficient utilization of bandwidth and time.
Deep web is a vast repository in a web that are not always
indexed by automated search engines. In this paper we are
surveying the available techniques used for focused crawling
and deep web crawling.

Keywords— focused web crawaling, deep web crawling,search
engines;

I. INTRODUCTION

Over the last 5-10 years the internet has become one of
the main source of information. People use search engines
to find any kind of information. Because of this, the need
for finding more accurate information is also increasing.
Search engines need to be up to date with the new pages
that are created everyday. Due to diversity of content, the
result becomes irrelevant when a specific query is run on
general search indexed pages. Therefore the idea of focused
web crawling came into picture.

Before the page is delivered to people as a result of
particular search query, web search engines needs to find
that pages from the trillions of pages available in world
wide web. To find these pages, web search engines employs
software robots called spider or crawlers and the process of
finding these pages is called web crawling.

In the last several years, some of the more
comprehensive search engines have written algorithms to
search the deeper portions of the world wide web by
attempting to find files such as .pdf, .doc, .xls, ppt, .ps. and
others. Searching for this information using deeper search
techniques and the latest algorithms allows researchers to
obtain a vast amount of corporate information that was
previously unavailable or inaccessible. Research has also
shown that even deeper information can be obtained from
these files by searching and accessing the "properties"
information on these files.

1.1 Focused web crawler

 Focused web crawling is the process of finding pages
that are related to some specific topics or satisfy some
particular property. Focused crawler tries to fetch as much
relevant page as possible efficiently. The goal is achieved
by, precisely prioritizing the already crawled pages and
managing the exploration of hyperlinks. The topics could

be anything for e.g. crawl pages with ‘.in’ or ‘.us’ domain,
crawl pages about sports/news etc.

Focused crawling is a good approach to provide better
search results because of the following two reasons:
1. The demand for topic-search engine is rising day by day.
Collecting topic-specific information can be done much
faster if smart crawling strategies are applied.
2. According to worldwidewebsize.com the current size of
indexed web page Google has is approximately 50 billion
and increasing at an exponential rate day by day. To crawl
such a large web one needs really intelligent techniques.
There are various categories in focused crawlers:

(a) Classic focused crawler
(b) Semantic crawler
(c) Learning crawler

(a) Classic focused crawlers [3] follows the search towards
interested pages by taking the user query. The topic which
they want to search is user query. They assign priorities to
the links based on the topic of query and the pages with
high priority are downloaded first. Similarity between the
topic and the page containing the links are used to compute
the prorities. Similarity of text is computed using an
information similarity model such as the Vector Space
Model (VSM) [4].
(b) Semantic crawlers [3] are a variation of classic focused
crawlers. Downloaded priorities are assigned to pages by
applying semantic similarity criteria to compute topic to
page relevance: the relevance of a page and the topic is
defined by the sharing of conceptual terms. Ontology is
used to define the conceptual similarity between the terms.
(c) Learning crawlers [5] uses a training process to guide
the crawling process and to assign visit priorities to web
pages. A learning crawler supplies a training set which
consist of relevant and not relevant Web pages in order to
train the learning crawler [5]. Links are extracted from web
pages by assigning the higher visit priorities to classify
relevant topic. Methods based on context graphs and
Hidden Markov Models (HMM) take into account not only
the page content but also the link structure of the Web and
the probability that a given page (which may be not relevant
to the topic) will lead to a relevant page .

 The focused crawler starts it’s task from few relevant
pages and then follows more promising links to find
relative pages. It uses the link structure but the order in
which they are processed is important. Focused crawler
must predict the probability that the page is related to some
specific topic before downloading it. There are many
algorithms that perform focused crawling. In this paper I

Saloni Shah et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7488-7492

www.ijcsit.com 7488

will describe them and also compare the results. It works as
follows:
• At the beginning URL Queue is fed with some relevant

seed URLs.
• Web page downloader fetches URLs from URL queue

and downloads that page from Internet.
• Parser and extractor extracts terms and Hyperlinks

from the downloaded pages.
• Relevance calculator finds the relevance of page based

on topic and assigned score to parent URL.
• Topic Filter determines the relativity of downloaded

page with the topic.
• If the page is found to be relevant then the URLs

extracted from that page are added to URL queue,
otherwise added to irrelevant table.

Fig. 1. Architecture of focused crawler

1.2 Deep web crawler

 Deep web or invisible web or hidden web is part of
World Wide Web that search engines cannot or will not
index. Deep web consist of proprietary sites, sites with
scripts, dynamic sites, ephemeral sites, sites blocked by
search engine policy, sites with special format etc.

 Shallow web or surface web is a part of Internet that
is indexed by automated search engines. Deep web is 5 to
500 times as vast as the shallow web. So if search engines
can only index 20% of the page the remaining 80% of the
web is remained un-indexed. Therefore it is more important
to crawl and index Deep web along with the shallow web.

Retrieving data from hidden Web sites has two tasks
resource discovery and content extraction. The first task
deals with automatically finding the relevant Web sites
containing the hidden information. The second task deals
with obtaining the information from those sites by filling
out forms with
relevant keywords. It deals with locating relevant forms that
serve as the entry points to the hidden Web data using a
multi-agent based Web mining crawler. Finding searchable
forms is useful in the following fields [6]
• Entry points for locating the deep Web
• Deriving source descriptions in the databases
• Form matching to find correspondences among attributes

The architecture of deep web crawler is shown:

Fig. 2. Architecture of deep crawler

A .Crawler [2]-
Initially the crawler is given a set of URLs to crawl called
seed URLs. The pages that are retrieved are given to the
parser module. The classifier component gives out list of
URLs that are identified as relevant. The links that are
identified as promising links are placed in the frontier
queue. A specified number of agents are spawned and each
agent is positioned at one of the links and given an initial
amount of energy to crawl.

B. Parser [2]-
This module gets a page from the crawler, analyzes for its
relevancy to the specific subject of retrieval. This task uses
similarity measure to calculate the relevance of the page on
a particular topic in equation as stated in the paper. The
links are extracted and sent to classifier module along with
set of keywords, anchor text, and text around the hyperlink.

C. Classifier [2]-
This module deals with identifying a link that leads to
searchable forms. There may be links whose single click
immediately direct to a form. There may be links which
give delayed benefit. To identify the links with immediate
and delayed benefit reinforcement learning is employed.
The reinforcement learning based multi-agents provide
good results in terms of harvest rate and freshness [2].

II. APPROACHES FOR FOCUSED AND DEEP CRAWLING

2.1 Approaches for focused web crawling

A. Without using background information
Focused Crawler was first proposed by DeBra94[1]

which was based on “Fish-Search”. In that algorithm[1]
each URL corresponds to a fish whose survival depends on
relevance of visited page and speed of remote server. The
algorithm marks pages either relevant or not relevant based
on simple keyword match. The algorithm works as follows:
seed URLs and query are given as input. It then builds a
dynamic priority Queue of URLs. At each iteration a URL
with higher priority (front of Queue) is popped and then
processed. During the evaluation of page it determines if
the page is relevant or not using simple keyword matching
and based on this score algorithm decides whether to move

Saloni Shah et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7488-7492

www.ijcsit.com 7489

in that direction or not. Links extracted from this page are
assigned a depth value. If the parent page is relevant depth
is assigned some predefined value otherwise one less than
the depth of parent’s depth. URLs with depth more than 0
are inserted into priority queue. A school of fishes migrates
in a direction of food (Here relevant pages). To find
information that is not directly available in one hop, A fish
dies when it traverses some threshold amount of irrelevant
pages. Based on relevance and number of extracted links,
fish produces offspring on every document. This algorithm
follows Depth-First Search approach.

Later cho98 proposed an idea to calculate pageRank of
a page and using that pageRank as a priority of the
extracted URL in the URL Queue. This didn’t produce
much gain over traditional Breadth-First Search algorithms
because the pageRank is calculated on very small non-
random subset of web.

Hersovici[1] extended the “Fish-Search” algorithm into
“Shark-Search” algorithm. To overcome the limitation of
Fish-search, they proposed algorithm, which ranked the
pages based on combination of relevance of source page,
anchor text, neighboring pages of pre-defined size and
inherent relevance score. Inherent relevance score is
multiplication of score of parent page and decay factor.
Relevance score is any number from 0 to 1 that is
calculated based on similarity between topic and document
in vector space. The paper Hersovici89 claims that the
Shark-Search works 1.5 to 3 times better than the traditional
Fish-Search.

The above mentioned algorithms worked without any
background information. In the upcoming years improved
ideas were proposed that uses some background
information inorder to better predict the relevance of a page
with respect to the query given.

B. Using background information
Chakrabarti99 built a system with three components:
Crawler, Classifier and distiller. A supervised topic
classifier[1] called ‘learner’ controls the priority of
unvisited URLs in the URL queue. This classifier is trained
on document samples available in topic taxonomy such as
Yahoo! and from them it learns to label new documents as
relative or not which in turn determines future link
expansion. Negative classes are also considered to prevent
the crawler shift into undesired topic category. Figure 2
below shows the architecture of focused crawler with
classifier.

 Further improvement on page relevance and URL
priority model. The model for page relevance outputs
whether the page is relative or not with the topic. The
model for ranking URL called ‘apprentice’[1] is an trained
online by samples consisting of source page features and
relevance of target page that defines the order of unvisited
URLs. This approach claims improve 30% to 90% against
false positive of chakrabarti99

Fig. 3. Focused crawler contralled by classifier

The crawling task comprises of five components:

1) User Interaction: User provides input to crawler
along with the ontology knowledge.
2) Web Crawling: Crawler starts with supplied
information and pages according to their ranks.
3) Preprocessing: it has several steps. To normalize
the text shallow text preprocessing techniques are used.
4) Ontology management: in order to move in right
direction crawler relies on the ontological knowledge
provided by human engineer.
5) Relevance computation: this is the heart of the
crawler. It takes into account the natural language text,
hyperlinks etc. to compute overall relevance score.

This kind of crawler showed significant improvement in
harvest rate - the ratio of number of webpages crawled
satisfying the crawling target to the number of pages
retrieved, as compare to baseline focused crawler, which
identifies page relevance by simple keyword match.

Later Bergmarc02 came up with an idea of adding
tunneling to focused crawling. It believes that only to
follow “Best-First” strategy to find relevant page is not
necessarily optimal, sometimes it is necessary to go in the
direction of series of not relative pages in order to get next
relevant pages. Though this strategy may impact on
efficiency, it can produce high-precision result in
reasonable amount of time. This approach believes that a
longer path history can impact on relevance of pages to be
retrieved in future and therefore construct a document
distance measure that takes considers parent page’s distance
and so on.

2.2 Approaches for deep web crawling

A. Single threaded crawler

The crawler[2] maintains a list of unvisited URLs
called the frontier. The list is initialized with seed URLs
which may be provided by a user or another program. Each
crawling loop involves picking the next URL to crawl from
the frontier, fetching the page corresponding to the URL
through HTTP, parsing the retrieved page to extract the
URLs and application specific information, and finally

Saloni Shah et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7488-7492

www.ijcsit.com 7490

adding the unvisited URLs to the frontier. Before the URLs
are added to the frontier they may be assigned a score that
represents the estimated benefit of visiting the page
corresponding to the URL. The crawling process may be
terminated when a certain number of pages have been
crawled. If the crawler is ready to crawl another page and
the frontier is empty, the situation signals a dead-end for the
crawler. The crawler has no new page to fetch and hence it
stops.

 Crawling can be viewed as a graph search problem.
The Web is seen as a large graph with pages at its nodes
and hyperlinks as its edges. A crawler starts at a few of the
nodes (seeds) and then follows the edges to reach other
nodes. The process of fetching a page and extracting the
links within it is analogous to expanding a node in graph
search. A topical crawler tries to follow edges that are
expected to lead to portions of the graph that are relevant to
a topic.

B. Multi threaded crawler

A sequential crawling loop spends a large amount of
time in which either the CPU is idle (during network/disk
access) or the network interface is idle (during CPU
operations). Note that each thread starts by locking the
frontier to pick the next URL to crawl. After picking a URL
it unlocks the frontier allowing other threads to access it.
The frontier is again locked when new URLs are added to it.
The locking steps are necessary in order to synchronize the
use of the frontier that is now shared among many crawling
loops (threads). The model of multi-threaded crawler[2]
follows a standard parallel computing model. Note that a
typical crawler would also maintain a shared history data
structure for a fast lookup of URLs that have been crawled.
Hence, in addition to the frontier it would also need to
synchronize access to the history. The multi-threaded
crawler model needs to deal with an empty frontier just like
a sequential crawler.

However, the issue is less simple now. If a thread finds
the frontier empty, it does not automatically mean that the
crawler as a whole has reached a dead-end. It is possible
that other threads are fetching pages and may add new
URLs in the near future. One way to deal with the situation
is by sending a thread to a sleep state when it sees an empty
frontier. When the thread wakes up, it checks again for
URLs. A global monitor keeps track of the number of
threads currently sleeping. Only when all the threads are in
the sleep state does the crawling process stop. More
optimizations can be performed on multi threaded model[2].

C. Gcrawler
The problem which exists in the traditional focused[2]

crawler URL analysis model described previously is that
the local optimal solution is often easily given in the
process of searching the relevant pages according to the
predetermined theme, namely only crawling around the
related web pages, which results in some related web pages
which are linked together through hyperlinks with lower
degree of relevance are not crawled, then an effective
coverage of the focused crawler reduces. The genetic
algorithm is a global random search algorithm that based on

the evolutionism and molecular genetics, whose prominent
feature is the implicit parallelism and the capacity to make
an effective use of the global information, and it can
effectively find the global optimal solution jumping local
optimum, which is the focused crawler URL analysis model
needs. Figure 4 shows the Architecture of GCrawler[2].

 But the genetic algorithm also has some disadvantages,
for example, it cannot use the feedback in the system and
lots of unnecessary redundancy iterations come out when
the solutions reach to certain extent; and the capacity of
local search is weak, also may not get the optimal solution.
For the crawling strategy of the current common focused
crawler, the content of the web pages is generally provided
by the editors, which results in some information irrelevant
to the predetermined theme involved in the web pages. The
whole web page documents will be often used in the genetic
process, when the genetic algorithm is used in the focused
crawler in the past, which results in the theme drift easily
comes out in the process. For the problems mentioned
above, this paper improves the genetic algorithm. Our
proposed crawler by using genetic algorithm is named as
Gcrawler.

Fig. 4. Gcrawler

III. COMPARISON OF VARIOUS APPROACHES

To better understand how the approaches differ from
each other, we have listed down the comparison between
the approaches. Each point reviewed is than compared to
other approach. The comparison also states the major points
of our review. This basically makes the review more
meaningful and easier for the reader to understand.
3.1 Comparison of focused crawler approaches

TABLE I
COMPARISON OF FOCUSSED CRAWLER APPROACHES

Without using background
information

Using background
information

System uses the Fish search
algorithm to find the relevance
of the search

The system consists of three
components: Crawler,
Classifier and Distiller

No training set provided while
performing the search

Initially a training set is
provided do decide whether
the searched page is relevant
or not relevant

The algorithm marks pages
either relevant or non relevant
based on simple keyword match

The classifier is trained on
document samples available in
topic taxonomy such as Yahoo
and from them it learns to
label new documents as
relevant or not relevant

The algorithm uses pageRank
mechanism to find the expansion
of the links to other pages.

The classifier helps in
determining future link
expansion

Saloni Shah et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7488-7492

www.ijcsit.com 7491

3.2 Comparison between approaches of deep web crawler

The experiment shows that the deep crawler URL
analysis model based on improved genetic algorithm[2]
proposed can improve accuracy rate, recall rate effectively,
and avoid getting into the local optimal solution. Table 1
shows the comparison among crawlers

TABLE III
EXPERIMENTAL RESULTS

 Single
thread

Multi thread Gcrawler

Precision 88.0% 80.0% 90.0%
Recall 22.83% 37.31% 37.31%

The table shows the comparison between the approaches
used for deep web crawlers.

TABLE IIIII
COMPARISON OF APPROACHES OF DEEP CRAWLER

Single
threaded

Multi
threaded Gcrawler

Performance Low Medium High

Pros

1.It maintains
frontier

2. gives
required
information

3. Also added
unvisited URLs
to the frontier.

1.It maintains a
fast lookup of
URLs
that have been
crawled.

2.Optimizations
can be
performed on
the multi-
threaded
model.

1.It can
effectively
find the
global
optimal
solution
jumping
local
optimization.

Cons

1.A sequential
crawling
loop spends a
large amount of
time in which
either the CPU
is idle or the
network
interface is
idle.

1.The
infrastructure
supports at one
extreme a very
simple breadth-
first crawler
and at the other
end crawler
algorithms that
may involve
very complex
URL selection
mechanisms.

1.The
capacity of
local search
is weak,
2. It may not
get the
optimal
solution.

IV. CONCLUSIONS

General Crawler has some limitation in terms of
precision and efficiency because of its generality, no
specialty. Focused Crawler[1] improves the precision and
recall of expert search on web. Focused crawler does not
collect all pages but select and retrieve relevant page only.
There are so many approaches to calculate the relevancy of
page. Some base on structured, some used classifier to
know the relevancy of page etc. Context based focused

crawling give more accurate result to user according to their
interest.

Focused crawler is the key technology of vertical search
engine, and the relevance analysis of URL topic is the
problem faced by focused crawler which must be solved
firstly. The two approaches for focused crawling is also
compared as shown in the Table 1. Along with the approach
the future work done to improve the earlier methods has
also being reviewed.

Various approaches for deep web crawling are also
discussed. From the discussion it is evident that Gcrawler is
most precise followed by single threaded and then multi
threaded crawler. It has 90% precision. Also recall factor is
better than single threaded approach. Table 3 shows the
comparison between these approaches. Thus, from the
comparison we see that Gcrawler is better than the other
two.

REFERENCES
[1] Meenu et al, A review of focused crawler approaches in International

Journal of Advanced Research in Computer Science and Software
Engineering, in Volume 4, Issue 7, July 2014.

[2] K.F.Bharti et al, A Framework for deep web crawler using genetic
algorithm in International journal of electronics and computer
science engineering, ISSN- 2277-1956

[3] Nidhi Jain and Paramjeet Rawal, “A study of focused web crawlers
for semantic web” in / (IJCSIT) International Journal of Computer
Science and Information Technologies, Vol. 4 (3) , 2013, 398-402

[4] G. Salton, A. Wong, C.S. Yang, A vector space model for automatic

indexing, Communications of the ACM 18 (11) (1975) 613–620

[5] H. Liu, J. Janssen, E. Milios, Using HMM to learn user browsing
patterns for focused web crawling, Data & Knowledge Engineering
(2006)270–32

[6] Ayoub Mohamed H. Elyasir1, Kalaiarasi Sonai Muthu Anbanan,
“Focused Web Crawler”, International Conference on Information
and Knowledge management,2012.

[7] Hongyu liu et al, “probabilistic models for focused web
crawling”,Dept. of Mathematics and Statistics, Dalhousie University
Halifax, NS, Canada B3H 1W5 .

[8] M. Diligenti† et al, "focused crawler using context graphs", NEC
Research Institute, 4 IndependenceWay, Princeton, NJ 08540-6634
USA

[9] Dhiraj Khurana et al, "web crawler:A review", in IJCSMS
International Journal of Computer Science & Management Studies,
Vol. 12, Issue 01, January 2012

[10] Jaideep Srivatsava, B. Mobasher, R. Cooley, “Web Mining:
Information and Pattern Discovery on the World Web”,
International conference on tools with Artificial Intelligence, pp558-
567, Newport beach, 1997.

[11] F. Gasparetti, A. Micarelli,“ Swarm Intelligence : Agents for
Adaptive Web Search”, Technical Report, Dept. of Information,
University of ROMA, Rome, Italy, 2000.

[12] Soumen Chakrabarti, ByronE.Dom, S. Ravikumar, Prabhakar,
Raghavan, Sridhar Rajagopalan, Andrew Tomkins, David Gibson,
Jon Kleinberg “ Mining Web’s Link Structure”, IEEE Computer,
pp60-67, 1999

[13] J.Akilandeswari, N.P. Gopalan, “A Web Mining System using
Reinforcement Learning for Scalable Web Search with
Distributed,Fault-tolerant Multiagents”, , Issue 11,Vol 4, p1633-
1639, November 2005.

.

Saloni Shah et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7488-7492

www.ijcsit.com 7492

